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Note on Transport Processes in Dense 
Colloidal Suspensions 
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A new approach to transport processes in dense charged as well as neutral 
colloidal suspensions is presented. It is based on a far-reaching analogy between 
dense colloidal suspensions and dense hard-sphere fluids, implying, in turn, an 
analogy with atomic liquids. As a result, new expressions valid for a number of 
colloidal transport coefficients are predicted. 
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Recently it was shown ~l~ for dense charged colloidal suspensions that the 
intermediate scattering function F(k, t) can be represented, for t ~ tz and 
for k near the maximum k* of the static structure factor S(k), by the 
expression 

F(k, t) = S(k)e -r(k)t ( la)  

where the decay constant F(k) is given by 

d(k) 
F(k) = D,K 2 S(K) ( lb)  

with D s, the single (tagged)-particle diffusion constant: 

Do 
Ds = - -  (lc) 
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Here t I is the average time between two successive interactions (collisions) 
of the Brownian particles. This expression was obtained from an assumed 
analogy of dense charged colloidal suspensions and corresponding dense 
hard-sphere fluids based on the hard-sphere-like behavior of S(k). Thus, in 
Eq. (1), ;~ is the radial distribution function at contact in a hard-sphere 
fluid and d(k)= [1 - j o ( x ) +  2j2(x)] 1, where j , (x)  is the spherical Bessel 
"function of order n and x = ka, (2) with ~ the diameter of the Debye spheres 
of the colloidal particles, determined such that k* for the colloidal suspen- 
sion and the hard-sphere fluid coincide/~) Do is the single (tagged)-particle 
diffusion coefficient at infinite dilution. 

In proposing Eq. (1) for F(k, t) it was argued that at high concentra- 
tions, i.e., for volume fractions ~b = n~3 /6  > 0.3 (n is the number density), 
the separation of the Debye spheres of the charged colloidal particles is 
small, so that the diffusion process, which dominates the decay of F(k, t), 
is determined by the direct interactions between the colloidal particles, 
which can be modeled by those in a hard-sphere fluid at the same volume 
fraction ~b. There are two important differences between the two systems 
due to the presence of the solvent in the colloidal fluid: (1) the colloidal 
particles move with Brownian dynamics, the hard spheres with Newtonian; 
(2) in a collision, only the particle number is conserved for colloidal 
particles, while particle number, momentum, and energy are conserved 
in the hard-sphere fluid. In spite of these differences, the very good 
agreement (1) of Eq. (1) with experiment vindicates the above assumption 
for the decay of F(k, t). Since at these high densities each particle finds itself 
in a cage formed by its neighbors, the diffusion process described by Eq. (1) 
can be called cage diffusion. This diffusion is characterized by a new 
diffusion coefficient F(k)/k2=Dsd(k)/S(k) ,  which differs fundamentally 
from the hydrodynamic diffusion coefficient for k = 0, since it takes into 
account that each particle moves not only in a cage formed by its 
neighbors (on a length scale ~2~/k*), but is itself part of the (moving) 
walls of the cages in which its neighbors are. Thus Eq. (1), derived from a 
solution of a linear Boltzmann-like equation, (2) incorporates the collective 
diffusion of the particles out of their cages in a dynamically consistent man- 
ner. Equation (1) for a colloidal suspension follows from the corresponding 
expression for a dense (pure) hard-sphere fluid, (2) i.e., from 

F(k, t) = S(k)e z(k), (2a) 

with 

d(k) (2b) z(k) = DEk 2 S(k) 
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where the first Enskog approximation to the diffusion coefficient D E is 
given by ~1) 

DB 
DE -- (2C) 

X 

To obtain from Eq. (2) the corresponding expression for charged colloidal 
suspensions, i.e., Eq. (1), one only has to replace the low-density 
(Boltzmann) diffusion coefficient DB = 0.214/(fim)l/2na2 by the correspond- 
ing coefficient Do for a dilute colloidal suspension (m is the mass of a hard 
sphere and f l=  1/kBT, with kB Boltzmann's constant and T the tem- 
perature). This implies that the main difference between the colloidal and 
the hard-sphere fluid is that the Brownian versus the Newtonian dynamics 
introduces a difference in time scales (ti) of the two systems of o'2/D0 : 
ff2/D B = 109: 1. (1) 

In this note we first show that Eq. (1) can also be used to describe 
F(k, t) for t= t l  and k = k *  for dense neutral colloidal suspensions, 
implying that the usual large difference in hydrodynamic interactions 
between charged and neutral colloidal particles (see, e.g., ref. 3) is not 
important at these high concentrations. This is indeed borne out in Fig. 1, 
where data for F(k) of both charged and neutral colloidal suspensions 
are compared with Eq. (1). The same similarity is illustrated in Fig. 2, 
where the minimum value F(k*) of F(k) is plotted as a function of ~b. 
The minimum of F(k) is due to the maximum of S(k) for ~b > 0.3. The 
agreement between the data for both charged and neutral colloidal suspen- 
sions and Eq. (1) is excellent. 

Second, in addition to the collective or many-particle F(k, t), we also 
considered the self (s)- or single (tagged)-particle Fs(k, t), for which one 
has for t ~ tl and k ~ k* 

F,(k, t) = e-r,(k)t (3a) 

where 

Fs(k)=D~k 2 (3b) 

Equation (3b) follows from Eq. (lb) by using that F(k, t)= F,(k, t) for very 
large k [-consistent with limk~ ~ d(k)=limk~ ~o S(k)= 1]. (1 3) In Fig. 3 we 
compare Ds/D o for charged and neutral colloiodal suspensions and 
DE/DB = 1/Z for the corresponding hard-sphere fluids. The agreement at 
high densities is very good. 

Third, Eqs. (1)-(3) do not contain any mode mode coupling effects 
that would appear in F(k) and Fs(k) for measurements on longer time 
scales t ~  tz than those used in Figs. 1 3 and Eqs. (1)-(3). Thus, Medina- 
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Fig. 1. Reduced decay rate F(k)a2/Do as function of ka for a charged colloid (circles; ref. 9, 
~r = 600 nm, ~b = 0.48, a2/Do = 82 ms), a neutral colloid (squares; ref. 10, a = 335 nm, ~ = 0.49, 
a2/Do = 123 ms), and from theory [curve; Eq. ( lb) ] .  

N o y o l a  (4) r e c e n t l y  d e r i v e d  u n d e r  a n u m b e r  o f  a s s u m p t i o n s  fo r  t h e  l o n g  

( L ) - t i m e  (se l f - )  d e c a y  c o n s t a n t  F,,L(k) o f  a t a g g e d  p a r t i c l e  in  n e u t r a l  

c o l l o i d a l  s u s p e n s i o n s  o n  t h i s  l o n g  t i m e  s c a l e  t h e  e x p r e s s i o n  

w i t h  

F~,L(k) = Ds, Lk 2 ( 4 a )  

Ds 
D s ' L -  1 + N c ( 4 b )  
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Fig. 2. Reduced minimum value Dok*2/F(k *) as function of ~b for charged colloids (closed 
circles; ref. 1), neutral colloids (open circles; ref. 12), and from theory [curve; Eq. ( lb) ] .  
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Fig. 3. Reduced diffusion coefficient DiD o as function of ~b for a charged colloid (closed 
circles; ref. 3), for neutral colloids (open circles; ref. 11), and from theory [curve; Eq. ( lc)] .  

where 

f ~  k 4 [ S ( k ) - l ]  2 
s c =  Ds d k - -  (4c) 

6rc2n S(k) Fs(k) + F(k) 

is a mode coupling contribution due, in our language, to the coupling of 
a colloidal self-diffusion [Fs(k)] and a cage diffusion mode [F(k)].  

Equation (4) can be understood immediately on the basis of our 
assumption of hard-sphere-fluidlike behavior of the colloidal suspension, 
since it follows from a corresponding expression for a pure, dense, hard- 
sphere fluid, given earlier by Kirkpatrick and Niewoudt(5): 

D=DE/[ I  + SC + S, v] (5) 

Here S c is also due to the coupling of a self-diffusion and a cage diffusion 
mode in a dense, hard-sphere fluid and is identical to S c of Eq. (4c) except 
that D o is replaced by D a. The term S v, the long-time-tail contribution to 
D, related to a coupling between a diffusive and a viscous mode, is absent 
in Eq. (4b); this is because of the absence of a viscous mode in the colloidal 
particle system, due to the absence of momentum conservation of the 
colloidal particles in collisions. In Fig. 4 experimental values of Ds, L/D o and 
D/DB are compared with Eqs. (4) and (5). 3 We note that at very high 
concentrations (~b > 0.55), S v does not contribute to D either, so that then 
Ds, L/Do = D/DB. 

3 The S c and S v used in Eq. (5) are evaluated by integrating the leading terms in (g( t )  and 
~s(t)  of Eq. (3.2) in ref. 5 from 6 and 3 mean free times, respectively, to infinity. The r c  used 
in Eq. (4c) is evaluated with F(k) of Eq. ( lb) ;  the numerical difference with the F(k) used 
in ref. 4, where d(k) is taken to be 1, is negligible. 
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Fig. 4. Reduced long-time diffusion coefficient Ds.L/D o of neutral colloids [circles, ref. 11; 
curve, Eq. (4b)] and D/D a of hard spheres [crosses, refs. 13, 14; dashed carve, Eq. (5)] as 
functions of ~b. 

On the basis of the similarity of neutral and charged colloids at high 
densities, we predicted (6/ that Eq. (4) also holds for charged colloids, on 
condition that one takes the Debye sphere diameter as a. Since o" can be 
chemically controlled, a systematic investigation of D as a function of a 
seems feasible. Similarly, we predict, for both neutral and charged suspen- 
sions, that the long-time (collective) decay constant is given by FL(k)= 
DL(k)k z, which Da(k)= D~,Ld(k)/S(k), in analogy with Eqs. (lb) and (3b). 

Finally, on the basis of our analogy, we can make, for the first time, 
a prediction of the shear viscosities r/ of concentrated neutral and charged 
colloids, in that both will behave as in dense, hard-sphere fluids. In that 
case ,  

r / =  r/E(1 C + Z ,  + Z v) (6a) 

where 

S c =  kBT fo* dkF ~ dS(k)] 2 1 (6b) 
60nZqE [S(k) dk J 2z(k) 

is the mode coupling contribution to r/, due to the coupling of two cage 
diffusion modes (s'7) and r/E is the Enskog shear viscosity. The contribution 
of the coupling of two viscous modes (X v) to q is negligible for all 
q~ > 0.3. (7) Thus, r//r/o for dense charged as well as neutral colloidal suspen- 
sions (r/o is the viscosity at infinite dilution, i.e., of the solvent) should 
behave as r//tln for dense, hard-sphere fluids (qB is the Boltzmann 
viscosity). One sees in Fig. 5 that the experimental r/o/r/ for neutral 
colloids (s) agree indeed well with the hard-sphere values of r/B/r/- It would 
clearly be of interest to compare also experimental data for the viscosity of 
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Fig. 5. Reduced inverse viscosity tlo/q of a neutral colloid (circles, ref. 8) and r/B/r / of hard 
spheres (curve, ref. 7) as functions of r 

dense, charged colloidal suspensions with Eq. (6) and study their 
dependence on the Debye sphere diameter a. In addition, the agreement of 
colloidal and hard-sphere viscosities suggests a possible connection of 
the onset of the glass transition in both systems. (5) A discussion of the 
rheological behavior of the viscosity in dense colloidal suspensions has 
been given elsewhere/15~ 

In previous publications (I'2) we have discussed in detail the close 
analogy between atomic liquids and dense hard-sphere fluids for k ~ k*. 
Thus, the more general analogy discussed here between dense colloids and 
dense, hard-sphere fluids implies one between dense neutral colloids and 
atomic liquids as well. These analogies therefore allow predictions of the 
diffusive properties of one system from the other by a simple scaling 
procedure. We remark that a different approach to predict the behavior of 
the viscosity, in particular the rheological behavior, of dense neutral 
suspensions, using a different scaling procedure as well as nonequilibrium 
molecular dynamics simulations, has been discussed by Woodcock. (16) 
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